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PURPOSE of this PRESENTATION .

To give a broad overview of

the motivation,
of some of the concepts and ideas,
and of some of the problems

related to the behavioral approach to systems and control.
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Example 1:

‘ MODELING '

?? Unifying, flexible framework ??

!! Model the planetary orbits !!
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Example 2:

To Tl
[

QY7777 A=

!! Model the dynamic relation between QQg, Q1 and Ty, T7 !!
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Example 3:
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environment

! Model the relation between V and 1 !!
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CLASSICAL APPROACH '

e Iinput/output:

Recognize input and output variables
Model the input-to-output map

e input/state/output:

Recognize input, output, and state variables
Model the input-to-state and the state-to-output maps

~> %w = f(zx,u) y = h(x)

Beautiful concepts, very effective algorithms, but i/o is simply

N

not suitable as a ‘first principles’ starting point.




‘ INTERCONNECTED SYSTEMS '

?? How do we model an interconnected system ??

It is not feasible to recognize the signal flow graph before we have a
model. The signal flow graph should be deduced from a model ...

N /
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More suitable approach ~» Bondgraphs:

e Recognize flow and effort variables, energy ‘bonds’
e Obtain model for components

Excellent physical motivation, much more suitable than
input-to-output connections, combining series, parallel, and feedback.

But
e Does not provide a language for modeling the ‘atoms’

e There is much more to interconnections than energy exchange
ports

e Does not incorporate synthesis (control, etc.) algorithms

o /
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BEHAVIORAL SYSTEMS '

A dynamical system = |3 = (T, W, 2B)

T C R, the fime-axis (= the relevant time instances),

W, the signal space (= where the variables take on their values),

B C W' : the behavior

(= the admissible, legal, feasible trajectories).

N
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‘ZZ(T,W,%)I \

For a trajectory w : T — W, we thus have:

: the model the trajectory w,
w ¢ 23 : the model forbids the trajectory w.

Usually, T = R, or [0, c0) (in continuous-time systems),

or Z, or N (in discrete-time systems).

Usually, W C R¥ (in lumped systems),

a function space
(in distributed systems, with time a distinguished variable),
or a finite set (in DES).

Emphasisuptonow: T =R, W = R,

\_

8 — solutions of system of linear constant coefficient ODE’S./
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‘ EXAMPLES '

1. Planetary orbits

T =R (time),
W = R3 (position),
83 — planetary orbits = Kepler’s laws:

(period)?

(axis)s — constant.

ellipses, = areas in = time,

11



/2. Heat diffusion q(x,t)

W

z lT(w,t)

A heated bar

Diffusion describes the evolution of the temperature 7'(x, t)
(x € R position, t € R time) along a uniform bar (infinitely long),
and the heat q(x, T') supplied to the bar. ~» the PDE

3T = 8—2T +4q

ot Ox?
T =R (time),
W = €°°(RR, R?) all (temperature, heat) distributions along a line,
B =allT(-,t),q(-,t)-pairs that satisfy the PDE.

\_
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3. Input | output systems

2

F(y(t), - y( ),dtz

y(t),..

= Fau(t), pu(t), o il

T =R (time),
W =0U XY (input X output signal spaces),
8 — all input / output pairs.

N

1)

u(t),...
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Models invariably contain other variables
than those at which the model aims

AR08 0500000000004!

Manifest variables = the variables the model aims at

Latent variables = the auxiliary variables

14
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‘ LATENT VARIABLE SYSTEMS '

A dynamical system with latent variables = X7, = (T, W, L, Bun)

T C R, the time-axis (= the set of relevant time instances),

W, the signal space (= the variables that the model aims at),

IL, the latent variable space (= the auxiliary modeling variables),

Bean C (W x L)" : the full behavior

(= the pairs (w, £) : T — W x L that the model declares
\ possible, admissible, feasible, legal).

~
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THE MANIFEST BEHAVIOR ' \

Call the elements of W [‘manifest’ variables] .

those of L [‘latent’ variables] .

The latent variable system X7 = (T, W, L, 2B¢,1;) induces
the manifest system 3 = (T, W, 2B), with manifest behavior

B={w:T—->W|3IJ£L:T— Lsuchthat (w,?) € Beun }

8 = the legal, admissible, feasible manifest trajectories

\In convenient equations for *35, the latent variables are ‘eliminated’./
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‘ EXAMPLES '

1. The RLC - circuit

|
|
|
|
|
|
|
|
|
|
|

environment

! Model the relation between V and I !!
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The circuit graph
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Introduce the following additional variables:
the voltage across and the current in each branch:

VRCa IRca VCa IC’a VRLa IRLa VLa IL-

Constitutive equations (CE):

d d
Vro= Rclr., Vr,= RrlIR,, CEVC = Ic, LEIL =VL

Kirchhoff’s voltage laws (KVL):

V=Vr.+Vc, V=VL+Vgr,, VRe +Vc =Vr + Vg,

Kirchhoff’s current laws (KCL):

\ I =Ir.+ 1y, IR, = Ic, Iy, =IRr,, Ic +Ir, =1

/
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Relation between V' and 1

After some calculations, we obtain the port equations:

Case 1:

CRo #
(& RL.

R R d d
(=S + 14+ -%)CRc— + CRc— ——)V
R: Ry

dt Ry, dt?

1+ CRceYY1+ 2 Y Ror
B ©dt Ry dt’ ¢

Case 2:

N

L
CRc = —.
L

Rc

(&,

d d
CR-—)V =(14+CR-—)R~1
+ Cdt) (1+ Cdt) C

These are the exact relations between V and 1 !

20
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The elements of this model as a latent variable system:

T =R,
W = R? - the manifest variables: the port voltage and current,

L = R® - the latent variables: the branch voltages and currents,

%full — all functions (V, I,VRC, IRC, VC, I(j, VRL ’ IRL ’ VL, IL)
that satisfy the CE’s, KCL, and KVL,

B = the functions (V, I') that satisfy the ‘eliminated’ port
equations.

N
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/2. Heat transfer:

To Tl
[

QY7777 A=

!! Model the dynamic relation between Qg, (21 and Ty, 17 !!

Introduce the temperature 7'(x,t),0 < = < 1 along the bar.

T, T(x,t)

Qo Q1

T

8
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Modeling leads to the following PDE and boundary conditions:

0 02

—T = —T

ot ox?

To(t) = T(0,¢),
Q) =~ 1(0,0)
T:(t) = T(1,¢t),
Q) = 1,0,

23
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The elements of this model as a latent variable system:

T =R (time),
W = R* manifest variables: the (temperature, heat) at both ends,

L = €°°([0, 1], R) temperature distribution along the bar,

Bru1 = the solutions of the PDE & the boundary conditions,

B = the (1o, Qo, 11, Q1 )-trajectories compatible with a
T (x, t)-trajectory.

N
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3. Input /state | output systems
La(t) = f(z(t),u(t); y(t) = h(z(t),u(t)),

T=RW=UXY,L=X,
Bean = all (u,y,z) : R — U X Y X X that satisfy these equations,
8 = all (input / output)-pairs.

4. DAE’s

5. Trellis diagrams

6. Automata

7. Grammars

Latent variables are universally present in models

N /
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Main application domain: modeling interconnected systems

26
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TEARING and ZOOMING '

The ingredients of the language and methodology that we propose:

1. [Modules ]: the subsystems

2. [Terminals ] : the physical links between subsystems

3. The [interconnection architecture ] :

the layout of the modules and their interconnection

4. The [mam’fest variable assignment] :

which variables does the model aim at?

~
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Features:

Reality — ‘physics’ — based
Mathematically precise; uses behavioral systems concepts
Recognizes prevalence of latent variables

More akin to bond-graphs and across/through variables,
than to input/output thinking and feedback connections

Not restricted to energy bonds, or ports

Modular: starts from ‘standard’ building blocks
Hierarchical: allows new systems to be build from old
Models are reusable, generalizable & extend-able

Assumes that accurate and detailed modeling is the aim

/
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The inappropriateness of input - to - output connections is illustrated
very well by the following simple physical example:

2 |

— h F

P11, f11 D12, f12 P21, fo1 D22, f22

Logical choice of inputs: the pressures p11, P12, P21, P22,
and of outputs: the flows f11, fi2, f21, f22.

In any case, the choice should be ‘symmetric’.

o /
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L

P22, fo2

f12 — _f21

Interconnection constraints:

P12 = P21 fiz2 = —fa1.

Equates two inputs and two outputs.

30



-

There is a rather complete ‘system theory’ available ...

We now briefly discuss a number of concepts and problems
that arise in the behavioral framework.

1. Controllability
2. Observability
3. Elimination of latent variables

4. Control as interconnection

o
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‘ CONTROLLABILITY '

The time-invariant system X = (R, W, 23) is said to be

[ controllable ]

if for all w1, wo € *B there exists w € B and T' > 0 such that

Controllability <
legal trajectories must be ‘patch-able’, ‘concatenable’.

/
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patching
trajector

1

time
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Consider system of the multi-variable constant coefficient linear
differential differential equations (includes DAE’s)

n

dt®

w = 0,

d
Row + Ry —w + -+ + R,

with w = (’LUl, Wy ,’UJW) and Ro, R1,°°° ,Rn - R&X¥,

Combined with the polynomial matrix

R(§) = Ro+ Ri&{+--- 4+ R,E,

this equation may be written in the shorthand notation as

d
R(—)w =0.
()w

N
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This defines the dynamical system > = (R, R", 23)

with behavior *3 all vector trajectories w : R — R¥
that satisfy R(%)w = 0.

Is this system controllable?

We are looking for conditions on the polynomial matrix R

N

and algorithms in the coefficient matrices Ry, R1,--- , R,.

35
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R( % )w = 0 defines a controllable system if and only if

rank(R(\)) is independent of A € C.

Example: ri1(—)wy = ro( — )w w1y . Wo scalar
P 1(dt) 1 2(dt) 2 ( 1, W2 )

is controllable if and only if 7, and 75 have no common factor.

Remarks:

e  algorithms using computer algebra (Grobner bases)
e d complete generalization to PDE’s
e d partial results for nonlinear systems

e Kalman controllability is a straightforward special case

N
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OBSERVABILITY '

Consider the system X = (T, W; x W5, B).

Each element of the behavior 25 hence consists of
a pair of trajectories (wq, ws).

w; : observed; w- : to-be-deduced.

Definition: w- is said to be

[observable from wlj

if ((w1,w)) € B, and (w1, w]) € B) = (w;, = wy),
i.e., if on *B, there exists a map w; — ws.

37
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to-be-deduced
variables

observed
variables

SYSTEM

Special case: Kalman definition:

observed = (input, output), to-be-deduced = state.

3 a complete theory (for constant coefficient ODE’s and PDE’s),
including algorithms, observer design, etc.

Analogous (but not ‘dual’) to controllability.

N /
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‘ ELIMINATION .

First principle models ~» latent variables. In the case of systems

described by linear constant coefficient differential equations:

n dn
= Mol + -+ - + M,
dtn L

L.

Row + -+ R,

In polynomial matrix notation ~»

d d
R(a)w = M(E)E

This is the natural model class to start a study of finite dimensional
linear time-invariant systems!

o /
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?? Is its manifest behavior also a differential system ??

Theorem: Itis!!
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Example: Consider the RLC circuit.

First principles modeling (=2 CE’s, KVL, & KCL)
~» 15 behavioral equations.

These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear constant coefficient
differential equations.
2. The elimination theorem.

Why is there only one equation? Passivity! ...

N
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Remarks:

e Number of equations (for constant coefficient linear ODE’s)
< number of variables.
Elimination = fewer, higher order equations.

e Implications for DAE’s

e There exist effective Grobner basis algorithms for elimination
(R, M) — R’

e Completely generalizable to constant coefficient linear PDE’s
(using the fundamental principle)

e Not generalizable to smooth nonlinear systems.
Why are differential equations so prevalent?

42



CONTROL AS INTERCONNECTION .

43




‘ INTERCONNECTION '

w3

44
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In case of control ~~

Plant to be controlled:

to be controlled
variables

PLANT

control
variables

45
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Two Kinds of variables:
e variables to be controlled w (taking values in W),
e control variables c (taking values in W,.).

The control variables are those variables through which we
interconnect the controller to the plant.

The plant is a dynamical system

23P — (T,W X Wca 7Dfull)a

with [full plant behaviorj

Pran := {(w, c) | (w, c) satisfies the plant equations}.

N
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Controller:

c CONTROLLER

control variables

The controller is a dynamical system

2Jc — (Ta Wca C),

with [controller behavior]

N

C = {c | c satisfies the controller equations}.

/

47



/Controlled plant:

w ' | PLANT L€ CONTROLLER
to be controlled control
variables variables

The controlled plant is the interconnection of the plant 3, and the
controller 3. through the interconnection variables c:

ZJP A ZC — (Ta W x Wc7 K:full)a

with [full controlled behavior]

N

Kean = {(w,c) | (w,¢) € Pgan and ¢ € C}.

/
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‘ GENERAL CONTROL PROBLEM '

Define the [manifest controlled behavior] by

IC := {w | there exists c such that (w, c) € KCeun }-

JC is thus the manifest behavior of the controlled plant.

General control problem: Given the plant 3.,

e specify a family A of admissible controllers,

e describe a set of specifications on the controlled plant,
i.e., desired properties of the manifest controlled behavior /C,

e find a controller X, € A such that the manifest controlled
behavior /C meets these specifications.

N /
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EXAMPLE '

Door closing mechanism:

AN wa
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With block diagrams, and ‘linearized’ -~
I

D |
\ |
™~ I F.
\ - M” - — —
™~
3 -

4

T M —
\ I
~ | F. e
\ 0 |

51




-

Equation of motion of the door (the plant):

M’dze—F F,
ﬁ— c+ e

F . force exerted by the door closing device, F, exogenous force.

Door closing mechanism modeled as mass-spring-damper
combination (the controller):

d20  __d6

N
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To be controlled variables: w = (0, F,),

Control variables: ¢ = (6, F,).

Plant: 3, = (R, R? X R?, Pgan),
with Pfull all (w, C) — ((99 Fe)a (09 FC))
that satisfy the equation of motion of the door.

Controller: ¥, = (R, R?,C),
with C all ¢ = (0, F,)
that satisfy the equation of motion of the door closing mechanism.

N /
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Controlled plant: ¥, A X, = (R, R? X R?, ICgyn) with full
controlled behavior /Cgyy: all ((0, F,), (0, F.)) that satisfy the
equations of motion of the door and the door closing mechanism.

Controlled behavior:

(M’ + M”)d29 -+ Dd‘9 + K6 = F,
dt? dt -

Specifications on the controlled system:

small overshoot, fast settling, not-to-high gain from F, — 6.

Note: Plant: second order;
Controller: second order;
Controlled plant: second (not fourth) order.

N

Finding a suitable controller ~» suitable values for M’, K and D.

/
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/Remarks: \

e Many control mechanism in practice do not function as sensor to

actuator drivers

e Control = Interconnection => controlled behavior is any behavior
that is wedged in between hidden behavior and plant behavior;
Control = finding a suitable sub-behavior

e  a complete theory of synthesis (stabilization, H .., ...) of
interconnecting controllers for linear systems

¢ Functionals in optimization criteria: Quadratic Differential
Forms

e Via (regular) implementability results, the usual feedback
structures are recovered

\0 Controllability and observability: central ideas also here /
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RECAP '

The behavioral approach: a cogent approach to modeling and
dynamics

A dynamical system = a behavior
Importance of latent variables

Interconnection via tearing and zooming
(# bondgraphs,or output-to-input)

Importance of elimination theorem and algorithms

System properties as controllability, observability, etc. find a
natural setting in the behavioral framework

Control = interconnection. Feedback: important special case
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‘ Thank you ! I




