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PURPOSE of this PRESENTATION

To give a broad overview of

the motivation,
of some of the concepts and ideas,
and of some of the problems

related to the behavioral approach to systems and control.
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MODELING

?? Unifying, flexible framework ??

Example 1:

Sun

Planet

!! Model the planetary orbits !!
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Example 2:

!! Model the dynamic relation between and !!
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Example 3:

environment
system

!! Model the relation between and !!
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CLASSICAL APPROACH

input/output:
Recognize input and output variables
Model the input-to-output map

input/state/output:
Recognize input, output, and state variables
Model the input-to-state and the state-to-output maps

====================================================

Beautiful concepts, very effective algorithms, but i/o is simply
not suitable as a ‘first principles’ starting point.
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INTERCONNECTED SYSTEMS

?? How do we model an interconnected system ??

It is not feasible to recognize the signal flow graph before we have a
model. The signal flow graph should be deduced from a model ...
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More suitable approach Bondgraphs:

Recognize flow and effort variables, energy ‘bonds’

Obtain model for components

Excellent physical motivation, much more suitable than
input-to-output connections, combining series, parallel, and feedback.

But

Does not provide a language for modeling the ‘atoms’

There is much more to interconnections than energy exchange
ports

Does not incorporate synthesis (control, etc.) algorithms
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BEHAVIORAL SYSTEMS

A dynamical system =

, the time-axis (= the relevant time instances),

, the signal space (= where the variables take on their values),

: the behavior

(= the admissible, legal, feasible trajectories).
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For a trajectory we thus have:

: the model allows the trajectory
: the model forbids the trajectory

Usually, , or (in continuous-time systems),
or or (in discrete-time systems).

Usually, (in lumped systems),
a function space
(in distributed systems, with time a distinguished variable),
or a finite set (in DES).

Emphasis up to now:
solutions of system of linear constant coefficient ODE’s.
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EXAMPLES

1. Planetary orbits

(time),
(position),

planetary orbits Kepler’s laws:
ellipses, = areas in = time, periodaxis constant.

Sun

Planet
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2. Heat diffusion

A heated bar

Diffusion describes the evolution of the temperature
( position, time) along a uniform bar (infinitely long),
and the heat supplied to the bar. the PDE

(time),
all (temperature, heat) distributions along a line,

all -pairs that satisfy the PDE.
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3. Input / output systems

(time),
(input output signal spaces),

all input / output pairs.
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!!!!!!!!

Models invariably contain other variables
than those at which the model aims

!!!!!!!!!!!!!!!!!!!!!!

Manifest variables = the variables the model aims at

Latent variables = the auxiliary variables
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LATENT VARIABLE SYSTEMS

A dynamical system with latent variables =

, the time-axis (= the set of relevant time instances),

, the signal space (= the variables that the model aims at),

, the latent variable space (= the auxiliary modeling variables),

: the full behavior

(= the pairs that the model declares
possible, admissible, feasible, legal).
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THE MANIFEST BEHAVIOR

Call the elements of ‘manifest’ variables ,

those of ‘latent’ variables .

The latent variable system induces
the manifest system with manifest behavior

such that

= the legal, admissible, feasible manifest trajectories

In convenient equations for , the latent variables are ‘eliminated’.
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EXAMPLES

1. The RLC - circuit

environment
system

!! Model the relation between and !!
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The circuit graph
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Introduce the following additional variables:
the voltage across and the current in each branch:

Constitutive equations (CE):

Kirchhoff’s voltage laws (KVL):

Kirchhoff’s current laws (KCL):
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Relation between and

After some calculations, we obtain the port equations:

Case 1: .

Case 2: .

These are the exact relations between and !

20



The elements of this model as a latent variable system:

,

– the manifest variables: the port voltage and current,

– the latent variables: the branch voltages and currents,

all functions
that satisfy the CE’s, KCL, and KVL,

the functions that satisfy the ‘eliminated’ port
equations.
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2. Heat transfer:

!! Model the dynamic relation between and !!

Introduce the temperature along the bar.
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Modeling leads to the following PDE and boundary conditions:
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The elements of this model as a latent variable system:

(time),

manifest variables: the (temperature, heat) at both ends,

temperature distribution along the bar,

the solutions of the PDE & the boundary conditions,

the -trajectories compatible with a
-trajectory.
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3. Input /state / output systems

,
all that satisfy these equations,

all (input / output)-pairs.

4. DAE’s

5. Trellis diagrams

6. Automata

7. Grammars

Latent variables are universally present in models
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Main application domain: modeling interconnected systems
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TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems

2. Terminals : the physical links between subsystems

3. The interconnection architecture :
the layout of the modules and their interconnection

4. The manifest variable assignment :
which variables does the model aim at?
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Features:

Reality — ‘physics’ — based

Mathematically precise; uses behavioral systems concepts

Recognizes prevalence of latent variables

More akin to bond-graphs and across/through variables,
than to input/output thinking and feedback connections

Not restricted to energy bonds, or ports

Modular: starts from ‘standard’ building blocks

Hierarchical: allows new systems to be build from old

Models are reusable, generalizable & extend-able

Assumes that accurate and detailed modeling is the aim
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The inappropriateness of input - to - output connections is illustrated
very well by the following simple physical example:

Logical choice of inputs: the pressures ,
and of outputs: the flows .

In any case, the choice should be ‘symmetric’.
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Interconnection constraints:

Equates two inputs and two outputs.
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There is a rather complete ‘system theory’ available ...

We now briefly discuss a number of concepts and problems
that arise in the behavioral framework.

1. Controllability

2. Observability

3. Elimination of latent variables

4. Control as interconnection
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CONTROLLABILITY

The time-invariant system is said to be

controllable

if for all there exists and such that

Controllability
legal trajectories must be ‘patch-able’, ‘concatenable’.
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time

patching
trajectory
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Consider system of the multi-variable constant coefficient linear
differential differential equations (includes DAE’s)

with and
Combined with the polynomial matrix

this equation may be written in the shorthand notation as
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This defines the dynamical system
with behavior all vector trajectories
that satisfy

Is this system controllable?

We are looking for conditions on the polynomial matrix
and algorithms in the coefficient matrices .
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defines a controllable system if and only if

is independent of .

Example: scalar)

is controllable if and only if and have no common factor.

Remarks:

algorithms using computer algebra (Gröbner bases)

complete generalization to PDE’s

partial results for nonlinear systems

Kalman controllability is a straightforward special case
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OBSERVABILITY

Consider the system

Each element of the behavior hence consists of
a pair of trajectories .

observed; to-be-deduced.

Definition: is said to be
observable from

if , and
i.e., if on , there exists a map .
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variablesvariables SYSTEM to-be-deducedobserved

Special case: Kalman definition:
observed = (input, output), to-be-deduced = state.

a complete theory (for constant coefficient ODE’s and PDE’s),
including algorithms, observer design, etc.

Analogous (but not ‘dual’) to controllability.
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ELIMINATION

First principle models latent variables. In the case of systems
described by linear constant coefficient differential equations:

In polynomial matrix notation

This is the natural model class to start a study of finite dimensional
linear time-invariant systems!
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?? Is its manifest behavior also a differential system ??

Theorem: It is !!
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Example: Consider the RLC circuit.

First principles modeling ( CE’s, KVL, & KCL)
15 behavioral equations.

These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear
constant coefficient differential equations?

Because:
1. The CE’s, KVL, & KCL are all linear constant coefficient

differential equations.
2. The elimination theorem.

Why is there only one equation? Passivity! ...
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Remarks:

Number of equations (for constant coefficient linear ODE’s)
number of variables.

Elimination fewer, higher order equations.

Implications for DAE’s

There exist effective Gröbner basis algorithms for elimination

Completely generalizable to constant coefficient linear PDE’s
(using the fundamental principle)

Not generalizable to smooth nonlinear systems.
Why are differential equations so prevalent?
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CONTROL AS INTERCONNECTION
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INTERCONNECTION
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In case of control

Plant to be controlled:

...

variablesvariables
to be controlled control

PLANT
...
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Two kinds of variables:

variables to be controlled (taking values in ),

control variables (taking values in ).

The control variables are those variables through which we
interconnect the controller to the plant.

The plant is a dynamical system

with full plant behavior

satisfies the plant equations
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Controller:

...

control variables

CONTROLLER

The controller is a dynamical system

with controller behavior

satisfies the controller equations
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Controlled plant:

CONTROLLER

variablesvariables
to be controlled control

...
...PLANT

The controlled plant is the interconnection of the plant and the
controller through the interconnection variables :

with full controlled behavior

and
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GENERAL CONTROL PROBLEM

Define the manifest controlled behavior by

there exists such that

is thus the manifest behavior of the controlled plant.

General control problem: Given the plant

specify a family of admissible controllers,

describe a set of specifications on the controlled plant,
i.e., desired properties of the manifest controlled behavior ,

find a controller such that the manifest controlled
behavior meets these specifications.
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EXAMPLE

Door closing mechanism:

hinges

wall

door

spring

damper
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With block diagrams, and ‘linearized’
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Equation of motion of the door (the plant):

force exerted by the door closing device, exogenous force.

Door closing mechanism modeled as mass-spring-damper
combination (the controller):
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To be controlled variables: ,

Control variables: .

Plant:
with all
that satisfy the equation of motion of the door.

Controller: ,
with all
that satisfy the equation of motion of the door closing mechanism.
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Controlled plant: with full
controlled behavior : all that satisfy the
equations of motion of the door ánd the door closing mechanism.

Controlled behavior:

Specifications on the controlled system:

small overshoot, fast settling, not-to-high gain from .

Finding a suitable controller suitable values for , and .

Note: Plant: second order;
Controller: second order;
Controlled plant: second (not fourth) order.
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Remarks:

Many control mechanism in practice do not function as sensor to
actuator drivers

Control = Interconnection controlled behavior is any behavior
that is wedged in between hidden behavior and plant behavior;
Control = finding a suitable sub-behavior

a complete theory of synthesis (stabilization, , ...) of
interconnecting controllers for linear systems

Functionals in optimization criteria: Quadratic Differential
Forms

Via (regular) implementability results, the usual feedback
structures are recovered

Controllability and observability: central ideas also here
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RECAP

The behavioral approach: a cogent approach to modeling and
dynamics

A dynamical system = a behavior

Importance of latent variables

Interconnection via tearing and zooming
( bondgraphs,or output-to-input)

Importance of elimination theorem and algorithms

System properties as controllability, observability, etc. find a
natural setting in the behavioral framework

Control = interconnection. Feedback: important special case
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Thank you !
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